Диагностика наследственных болезней с генными мутациями

Почему у здоровых мужчин и женщин могут родиться дети с хромосомными мутациями? Какие болезни родственников должны стать причиной для обращения к генетику? Как составляется карта генетических рисков? На эти и другие вопросы Yellmed ответила врач-генетик сети центров репродукции и генетики Нова Клиник Анастасия Владимировна Волкова.

Фото: pixabay.com

– Анастасия Владимировна, как гены могут помешать женщине стать матерью, а мужчине – отцом?

– Чтобы ответить на этот вопрос, немного расскажу об организации генетического материала. Хромосомы расположены в ядре клетки, они сложены из непрерывной ДНК. И вот эту ДНК мы условно делим на гены.

На данный момент наиболее изучены генетические причины мужского бесплодия на уровне генов. У мужчин есть на У-хромосоме фактор азооспермии AZF, который состоит из 3 регионов: a, b, c. Выпадение или отсутствие части или полностью региона сопровождается нарушением созревания и деления сперматозоидов.

В некоторых случаях, чтобы «получить» сперматозоид для оплодотворения в программе ЭКО, необходимо провести биопсию яичка.

У мужчин также может быть нарушен отток спермы по семявыносящим канальцам. Это происходит либо из-за повышенной вязкости спермы, либо в силу недоразвития семявыносящих протоков. Такое патологическое состояние мы видим у мужчин, больных наследственным заболеванием – муковисцидозом, а также у носителей мутации в гене CFTR, ответственном за развитие данного заболевания.

– Часто будущие родители не подозревают, что являются носителями серьезных наследственных заболеваний или даже имеют хромосомные мутации. В какой момент проблема «вылезает» наружу?

– Если рассматривать целые хромосомы, состоящие из большого количества генов, то и здесь можно обнаружить причины, приводящие к бесплодию или рождению больного ребенка.

Речь идет о носителях сбалансированных перестроек в своих хромосомах. Внешне это здоровые люди, без клинических проявлений. Однако когда встает вопрос о деторождении, в семье наступает неразвивающаяся беременность, возможно, потом еще одна. Ко мне приходят семьи с двумя и тремя потерями беременности в анамнезе. При исследовании хромосом обоих супругов – анализ кариотипа – обнаруживается сбалансированная перестройка. Например, транслокация – обмен генетическим материалом между двумя хромосомами. При сбалансированном типе перестройки не происходит потери генов, поэтому внешне перестройка никак себя не проявляет. Но у носителя повышен риск передачи своему ребенку хромосом с утратой участка гена или дупликацией, то есть в несбалансированном виде.

Некоторые перестройки чаще приводят к выкидышам на ранних сроках, другие – к рождению ребенка с хромосомной аномалией. Трисомия 21-й хромосомы, или синдром Дауна, в ряде случаев «передается» от родителей-носителей. Бессимптомное носительство мутаций есть и на уровне генов.

Установлено, что каждый человек является носителем мутаций в своем геноме, иначе говоря, они находятся в спящем состоянии. Чтобы заболевание «проявилось», муж и жена должны иметь мутации в одном и том же гене.

Тогда одна дефектная копия гена передастся ребенку от папы, а вторая — от мамы. В этой ситуации ребенок будет болен. Данный тип наследования называется аутосомно-рецессивный, риск для потомства в семье двух носителей составит 25%.

– Как человеку догадаться, что он является носителем опасных болезней, связанных с патологиями генов?

– Генетик при планировании беременности рекомендует пройти генетическое тестирование на скрининг носительства мутаций в генах. Семья может выбрать расширенное обследование, например, поиск частых мутаций в генах самых распространенных аутосомно-рецессивных заболеваний. Выделяют также этноспецифический скрининг – когда мы знаем, что в данной популяции высокая частота носительства по конкретным заболеваниям. Например, у армян распространено наследственное заболевание – средиземноморская лихорадка, или периодическая болезнь. Каждый десятый является носителем мутации в гене, ответственном за развитие заболевания.

Фото: Нова Клиник

– Какие болезни родственников – родителей, бабушек и дедушек – должны стать сигналом, что нужно пройти консультацию генетика, прежде чем самому планировать детей?

– Всего описано около 7 тысяч редких болезней, и с каждым днем их количество увеличивается.

В первую очередь, семья должна обратиться на консультацию к генетику, если у ближайших родственников были случаи умственной отсталости, врожденных и наследственных заболеваний, расстройств аутистического спектра, эпилепсии, бесплодия, ранней младенческой смертности, у женщин – ранней менопаузы до 40 лет, у мужчин – шатающейся походки атаксии, тремора после 45-50 лет.

– У моей мамы была СКВ – системная красная волчанка – серьезное и сложное аутоиммунное заболевание. Стоит ли мне беспокоиться и при планировании беременности сдавать специальные генетические анализы?

– Системная красная волчанка – многофакторное заболевание, то есть болезнь с наследственной предрасположенностью. Разовьется ли заболевание при жизни у человека, зависит от действия множества генов и наличия факторов внешней среды. Поэтому не имеет смысла сдавать генетические анализы.

А если не знаешь, какое было здоровье у дальних родственников? Или, например, о твоем собственном отце ничего не известно, а о его родителях – и подавно.

– При отсутствии информации о здоровье ближайших родственников семья может пройти скрининг носительства мутаций, чтобы определить, какие мутации в «спящем» состоянии «достались» от родителей.

– Как составляется карта генетических рисков?

– Карта генетических рисков – это расширенная панель скрининга носительства мутаций в генах. Панели могут включать разное количество заболеваний. При составлении панели лаборатория руководствуется следующими критериями: высокая частота носительства в популяции, заболевания имеют четкие клинические проявления и оказывают пагубное влияние на качество жизни, требуют хирургического или медикаментозного вмешательства и прочие.

– Какие риски чаще всего обнаруживаются?

– Частота «обнаружения» зависит от частоты носительства мутаций. Наиболее распространены моногенные заболевания: спинальная амиотрофия, частота носительства в популяции, в среднем, 1:32 — 1:40, и муковисцидоз – 1:45.

– Если у супругов происходит конфликт на уровне хромосом и годами не наступает беременность, им можно как-то помочь? У них есть шанс стать родителями?

– Да, можно. В некоторых случаях у мужчин-носителей транслокаций выявляют выраженные изменения в показателях спермы. Естественным путем в такой ситуации беременность не наступит. Поэтому лечение бесплодия рекомендовано методом ЭКО с проведением ПГТ – преимплантационного генетического тестирования.

ПГТ необходимо для выявления у эмбриона несбалансированных перестроек и численных нарушений хромосом, которые может принести сперматозоид для оплодотворения.

Заранее определив «здоровые» эмбрионы, мы увеличиваем шанс наступления беременности.

– Как парам, планирующим беременность, узнать, что у них есть серьезные хромосомные мутации?

– Узнать о носительстве изменений, то есть перестроек, в своих хромосомах можно только путем исследования хромосом – кариотипирования. Для этого нужно всего лишь сдать анализ крови. Если же семья уже столкнулась с бесплодием, невынашиванием беременности, необходима консультация генетика. Задача врача – провести внешний осмотр супругов, собрать информацию об обследовании и лечении, составить родословную.

– В каких случаях назначают кариотипирование – микроскопическое исследование для выявления хромосомных аномалий?

– Кариотипирование, как тест первой линии, рекомендовано при: задержке полового развития, первичной или вторичной аменорее, ранней менопаузе, бесплодии неясной этиологии, невынашивании беременности, множественных пороках развития у плода, хромосомных аномалиях, выявленных при исследовании материла замершей беременности, хромосомной аномалии у ребенка, выраженном нарушении сперматогенеза, а также детям при задержке психо-речевого, моторного и физического развития, врожденных пороках развития, малых аномалиях развития, с неясным полом при рождении.

Хочу отметить, исследование хромосом в микроскоп – очень сложная и кропотливая работа.

– Как проводится анализ эмбриона на наличие генных отклонений? Говоря простым языком – как к нему подобраться?

– После оплодотворения образуется зигота, которая начинает активно делиться. На 5-6 сутки развития формируется бластоциста. Она представлена двумя рядами клеток и полостью.

Первый ряд клеток – это внутренняя клеточная масса, которая в дальнейшем даст развитие самому ребенку. Второй ряд клеток – трофэктодерма, из которой будет формироваться плацента. В большинстве случаев генетический материал одинаковый во внутренней клеточной массе и трофэктодерме. Эмбриолог проводит биопсию, то есть забор нескольких клеток от трофэктодермы. Эти клетки отправляют в лабораторию на исследование, сами эмбрионы замораживают.

Фото: pixabay.com

– Можно полностью застраховаться от всех «генетических сюрпризов»? Или есть патологии, которые проявляются только на этапе эмбрионального развития и предсказать их невозможно?

– Не существует всеобъемлющего исследования, которым можно исключить все мутации по разным группам заболеваний. Например, молекулярно-генетический метод исследования нового поколения NGS позволяет определить численные нарушения по всем 46 хромосомам, но микроскопические потери или удвоения участков хромосом посмотреть не удастся.

Проводя поиск генных мутаций, мы не обнаружим изменения числа хромосом – анеуплоидии. «Осечки» могут быть также и потому, что исследуется только несколько клеток трофэктодермы эмбриона, а для полноценного исследования требуется большее количество клеток.

К патологиям, которые проявляются только на этапе эмбрионального развития, можно отнести пороки развития плода. Какие-то из них будут иметь мультифакториальную природу, какие-то «возникнут» в результате тератогенного действия, например, инфекции – ветряной оспы, краснухи и других или радиационного облучения на ранних этапах развития ребенка.

– Почему у женщин зрелого возраста существенно повышается риск появления у эмбриона синдрома Дауна? И это правда, что после сорока лет он составляет 80%?

– Да, действительно, у женщин с 35 лет увеличивается риск рождения ребенка не только с синдромом Дауна, но другими численными хромосомными аномалиями, например, синдром Эдвардса и синдром Патау. Это связано с увеличением риска неправильного деления яйцеклетки. В результате яйцеклетка принесет для оплодотворения лишнюю хромосому по какой-то паре. При синдроме Дауна лишняя 21-я хромосома, при синдроме Эдвардса – 18-я хромосома, а при синдроме Патау – 13-я.

Если рассматривать программу ЭКО, то доля эмбрионов с правильным набором хромосом у женщин 40 лет и старше составляет примерно 20%. В отношении синдрома Дауна: в 40 лет риск родить ребенка с трисомией 21-й хромосомы составляет 1:63, а в 45 лет – 1:19.

– Женщины, которые хотят забеременеть после 40, пусть даже с помощью ЭКО, наверняка, понимают, на какой риск идут. Бывает так, что их этот риск останавливает?

– Не все понимают, в силу отсутствия знаний и информации о наследственной патологии. Осознание в большинстве случаев происходит на консультации генетика.

В программе ЭКО, даже получив полноценную информацию о риске генетической патологии, есть семьи, отказывающиеся от проведения преимплантационного генетического тестирования.

Причины разные: боязнь проведения биопсии клеток эмбриона для исследования, ведь у некоторых пар можно «получить» лишь один или 2 эмбриона, религиозные убеждения и другие обстоятельства.

– Какой процент риска рождения ребенка с наследственной или врожденной патологией говорит о том, что целесообразно прервать беременность?

– Процент риска ни в одной ситуации не является показанием для прерывания беременности. Для выявления генетической патологии необходимо проведение подтверждающего метода – инвазивной пренатальной диагностики с целью забора материала и генетического исследования.

При подтверждении генетической патологии, например трисомии 21 хромосомы, семья может прервать беременность до 22 недель.

– Бывают случаи, когда генетические анализы не показывают никаких отклонений, а у ребенка все равно появляются недуги, связанные с хромосомными аномалиями?

– Есть отдельная группа хромосомных аномалий – микроделеционные синдромы, которые могут себя «не проявлять» во время беременности. На пренатальном скрининге в группу высокого риска женщина не попадет ни по биохимическим показателям, ни по эхографическим маркерам. Это происходит потому, что либо микроделеционный синдром не сопровождается врожденными пороками развития, либо порок развития имеет позднюю манифестацию, обнаружить его на ультразвуке можно после 22 недели беременности. Чаще всего микроделеционные синдромы, то есть потеря небольшого участка хромосомы, возникает de novo – впервые.

Фото: pixabay.com

– Недавно мировые СМИ рассказывали о мальчике, у которого из-за редкой генетической аномалии почка опустилась в бедро. С какими редкими отклонениями Вы встречались в своей практике?

– У мальчика обнаружена хромосомная аномалия – потеря участка короткого плеча хромосомы 7 – делеция, которая в большинстве случаев возникает de novo – впервые. Каким образом будет себя «проявлять» делеция, зависит от размера потерянного участка и того, какие гены утрачены.  «Уникальность» данного случая в том, что ранее у детей с таким же синдромом не выявляли эктопического расположения почки за пределами брюшной полости.

В своей практике я встречалась с разными орфанными заболеваниями в силу того, что консультировала детей, а 50% врожденной и наследственной патологии выявляется в детском возрасте. Это и синдром Вольфа-Хиршхорна, и синдром Моута-Вильсона, и синдром Вильямса, и муколипидоз 2 типа, а также множество других наследственных заболеваний.

Все случаи разнообразные по клинической картине.

– Наука развивается стремительно: говорят, скоро врачи научатся «редактировать» гены у эмбриона. Неужели такое возможно?

– На данном этапе проводится исследовательская работа по редактированию генома. Не исключено, что в ближайшем будущем это будет осуществимо на эмбрионах.

– В настоящее время можно как-то повлиять на генетику будущего ребенка? Например, снизить вероятность рождения малыша с синдромом Дауна у женщин после 40 лет.

– Нет, снизить вероятность рождения ребенка с синдромом Дауна нельзя. Простая трисомная форма возникает в результате случайной «ошибки»  – нерасхождения хромосом – во время деления ядер половых зародышевых клеток. В норме из одной зародышевой половой клетки образуется 2 клетки, каждая несет 23 хромосомы. При оплодотворении нормальным спермием, также несущим 23 хромосомы, образуется эмбрион с нормальным численным набором – 46 хромосомами.

Если же при делении происходит ошибка, тогда в одну половую клетку попадает 3 хромосомы, то есть одна лишняя, а в другую – ни одной. При оплодотворении яйцеклетки с тремя хромосомами образуется трисомия, и ребенок будет болен.

Нерасхождение хромосом в мейозе – это случайное событие, предугадать его невозможно. Примерно в 90% случаев ошибки при делении происходят во время оогенеза – деления женских половых клеток, и в 10% во время сперматогенеза – деления мужских половых клеток.

– Какой процент среди причин бесплодия приходится на генетические отклонения?

– Около 50-70% случаев ранней остановки развития и внутриутробной гибели эмбриона обусловлено хромосомными аномалиями, такими как аутосомные трисомии, полиплоидия, моносомия Х-хромосомы и несбалансированные структурные перестройки. В семьях с бесплодием и потерями беременности на ранних сроках частота носительства сбалансированных хромосомных аберраций – 8%. 

– Какова осведомленность россиян в вопросах генетики? Они понимают, что целесообразно тратить деньги на генетические анализы, которые все-таки недешевые?

– Осведомленность низкая и по сей день, однако за последние годы благодаря работе генетиков, благотворительных фондов, СМИ ситуация улучшается. Все больше врачей смежных специальностей направляют на консультацию к генетику по разным вопросам.

– Анастасия Владимировна, почему Вы выбрали такую специализацию, как репродуктивная генетика? Мне, как неспециалисту, кажется, это очень сложно, но в то же время интересно.

– На самом деле я клинический генетик, а значит, области моего консультирования разные. Я всегда стремилась работать не только со взрослым населением по вопросам репродукции и пренатального скрининга, но и активно консультировала детей. И даже некоторое время работала в стационаре – в отделении врожденных и наследственных заболеваний. Эта внутрисистемная работа в области медицинской генетики крайне важна для развития специалиста.

Источник



«Это у нас в семье наследственное», — мы часто говорим так по отношению к самым разным вещам. Под понятие «наследственное» может попадать и цвет волос, и телосложение, и постоянные простуды. Особенно часто мы оправдываемся наследственностью, имея в виду болезни, что далеко не всегда соответствует действительности. Что же собой представляют генетические, или наследственные, заболевания, как их диагностируют и можно ли их предотвратить?

Что такое генетические болезни? Обременительное наследство

Для начала необходимо разобраться в терминах. Начнем с того, что генетические заболевания и заболевания, к которым выявлена наследственная предрасположенность, — разные понятия.



  • Генетические болезни


    обусловлены нарушениями в строении генома (отсюда другое название — моногенные заболевания). В качестве примера можно привести галактоземию. При этом заболевании плохо работают ферменты, которые превращают молочный сахар в глюкозу. Уже выявлен ген, «отвечающий» за развитие заболевания. Более того, выяснено, что если ребенок получает «дефектный» ген от одного из родителей, то ферментная система работает примерно на 50%, а если от обоих, то всего на 10%

    [1]

    .



  • Заболевания, к которым у человека есть наследственная предрасположенность


    , зависят не только от генетики, но и от факторов внешней среды: того, где мы живем, сколько двигаемся, что едим. Например, у человека может быть склонность к атеросклерозу, но правильный образ жизни и рациональное питание помогают ему оставаться здоровым.

Чтобы понять принцип передачи наследственных заболеваний, надо вспомнить, что такое гены. Условно говоря, это некий набор «карт памяти», на каждой из которых «записаны» определенные данные об организме человека. Если же говорить научным языком, то ген — это фрагмент нашей ДНК. Совокупность генов (а их число доходит до 25 000

[2]

), представляющая собой плотно свернутую нить ДНК, — это хромосома. Всего у человека их 23 пары. Это весь наш генетический багаж, или иначе — геном.

Каждая из 23 хромосом имеет свою пару. Записанная в структуре одной хромосомы информация дублируется на парной. То есть любой признак, будь то цвет глаз или предрасположенность к сердечно-сосудистым заболеваниям, кодируется двумя генами. Они могут быть идентичными, но могут и отличаться (такие гены называют аллелями). Например, один из двух генов, определяющий цвет глаз, может «кодировать» серый оттенок, а второй — карий. Скорее всего, у носителя таких аллелей цвет глаз будет карий, так как ген, несущий эту информацию, является доминантным. Второй же ген (серый цвет глаз) более «слабый» — рецессивный

[3]

.

Теперь разберемся в механизме наследования. Формируясь, зародыш получает половину хромосом от матери, а половину — от отца. Именно поэтому организм ребенка не копирует ни одного из родителей, а имеет свою индивидуальность. Передача хромосом, генов, а значит, и передача информации о наследственных заболеваниях, возможна по нескольким схемам:



  • аутосомно-доминантный


    . Если ребенок получает «сильный», доминантный, ген хотя бы от одного из родителей, то этот ген обязательно проявится. Таким образом передается, например, ахондроплазия — заболевание, при котором нарушается рост конечностей, а кости становятся ломкими

    [4]

    .



  • аутосомно-рецессивный


    . Здесь чуть сложнее — признак проявляется только в том случае, если ребенок получил от родителей два «слабых», рецессивных, гена. Вероятность проявления заболевания ниже, чем в первом случае. Таким образом передаются по наследству фенилкетонурия, альбинизм и другие заболевания

    [5]

    .



  • кодоминантный


    . При этом типе наследования проявляются оба гена — и доминантный, и рецессивный. Примером может быть серповидно-клеточная анемия: наличие активных доминантного и рецессивного генов приводит к тому, что в крови обнаруживается и нормальная, и патологическая форма гемоглобина.


  • наследование, сцепленное с полом


    . Известно, что половые хромосомы у мужчин и женщин различаются: у женщин две Х-хромосомы, а у мужчины — X и Y. К половым хромосомам «привязаны» некоторые важные признаки и информация о заболеваниях. Например, гемофилией, как известно, болеют почти исключительно мужчины

    [6]

    : если в Х-хромосоме у мужчин содержится ген, отвечающий за патологию, то Y-хромосома никак его не компенсирует, там этого гена нет

    [7]

    . По этому же принципу передаются дальтонизм, мышечная дистрофия Дюшена и т.д.

К наиболее распространенным генетическим заболеваниям относятся:

  • дальтонизм — около 850 случаев на 10 000;
  • расщепление позвоночника — 10–20 случаев на 10 000 человек;
  • синдром Клайнфельтера (эндокринные нарушения, которые могут стать причиной мужского бесплодия) — 14–20 на 10 000;
  • синдром Дауна — 9–13 на 10 000;
  • синдром Тернера (болезнь, которая приводит к половому инфантилизму) — около 7 на 10 000;
  • фенилкетонурия (нарушение метаболизма аминокислот) — до 3,8 на 10 000;
  • нейрофиброматоз (заболевание, при котором у больного возникают опухоли) — около 3 на 10 000;
  • муковисцидоз — 1–5 на 10 000;
  • гемофилия — до 1,5 на 10 000

    [8]

    .

Направления генетических обследований

Сегодня врачи выявляют генетические заболевания с высокой точностью, так как передовые технологии позволяют буквально заглянуть внутрь гена, определить, на каком уровне произошло нарушение.



На заметку




В зарубежной прессе уже появляются сообщения о том, что ведутся эксперименты по применению методов редактирования генома для борьбы с некоторыми заболеваниями. В частности, журнал Nature упоминал о подобных экспериментах в области борьбы с ВИЧ

[9]

.

Есть несколько направлений обследований.


Диагностическое тестирование

Диагностическое тестирование проводится, если у пациента есть симптомы или особенности внешнего развития, служащие отличительной чертой генетического заболевания. Перед направлением на диагностическое тестирование проводят всесторонний осмотр пациента. Одна из отличительных черт наследственных заболеваний — это поражение нескольких органов и систем

[10]

, поэтому при выделении целого ряда отклонений от нормы врач направляет пациента на молекулярно-генетическую диагностику.

Так как многие наследственные заболевания (например, синдромы Дауна, Эдвардса, Патау) связаны с нарушением количества хромосом (кариотипа), то для их подтверждения проводят кариотипирование, то есть изучение количества хромосом. Для анализа требуются клетки крови, которые в течение нескольких дней выращивают в особой среде, а затем окрашивают. Так врачи выделяют и идентифицируют каждую хромосому, определяют, нарушен ли их количественный состав

[11]

, отмечают особенности внешнего строения.

Для выявления мутаций конкретных генов применяется метод ПЦР — полимеразной цепной реакции. Его суть состоит в выделении ДНК и многократном воспроизводстве интересующего исследователя участка. Как отмечают специалисты, преимущество ПЦР — его высокая точность: здесь почти невозможно получить ложноположительный результат. Метод удобен еще и тем, что для исследования может быть взята любая ткань организма

[12]

.


Пренатальная и предимплантационная диагностика

Если вы знаете, что у вас в семье или в семье супруга были случаи наследственных болезней, то, конечно, захотите выяснить, какова вероятность проявления их у ваших детей. Врачи часто предлагают будущим родителям сделать пренатальную диагностику. А если пара использует вспомогательные репродуктивные технологии, то и предимплантационную генетическую диагностику плода (ПГД).

ПГД нужно сделать, если возраст матери превышает 35 лет, если у пары уже были прерывавшиеся беременности, а также родились дети с наследственными заболеваниями. Также врачи рекомендуют делать ПГД, если родители являются носителями генетического недуга. В этом случае в семье есть случаи проявления патологии, но сами супруги здоровы. А вот вероятность проявления болезни у ребенка может достигать 50%, причем ПГД помогает точно определить этот показатель. Анализ проводится, когда эмбрион, полученный «в пробирке», вырастает до стадии 6 или 8 клеток

[13]

.

Пренатальная генетическая диагностика проводится, когда ребенок еще находится в утробе матери. Предположить наличие генетических отклонений врач может на основании анализов крови матери или по результатам УЗИ плода. Поэтому на начальном этапе беременная проходит трехмаркерный скрининг: в ее крови определяют уровень АФП, β-хорионического гонадотропина и эстриола. Если их концентрация отлична от нормы, то врач рекомендует выполнить генетическое обследование ребенка. Для этого с помощью пункции берут амниотическую жидкость и проводят кариотипирование плода. Единственный недостаток этого метода — долгий период ожидания результатов. Если последний будет негативным, то женщина просто может не успеть принять решение о прерывании беременности. Есть и альтернатива — анализ ворсин хориона. Его можно сделать на раннем сроке, но получение материала представляет угрозу для протекания беременности

[14]

.

В последнее время появилась еще одна возможность пренатального обследования плода — неинвазивный пренатальный ДНК-тест (НИПТ-тест). В этом случае нужна только кровь матери. Точность теста достигает 99%, причем можно сделать обследование как на самые часто встречающиеся генетические патологии, так и полное исследование плода

[15]

.


Определение носительства

Рассматривая виды наследования генетических заболеваний, мы упомянули об аутономно-рецессивном способе и о наследовании, сцепленном с полом. Человек может быть здоров, но в его генотипе при этом присутствует патологический ген. Выявить это помогает анализ на носительство. Многие делают его на стадии планирования беременности, чтобы вычислить вероятность рождения ребенка с генетическими заболеваниями.

Например, такая болезнь, как гемофилия, проявляется только у мужчин, женщины не болеют, но могут быть носителями. Поэтому женщинам, у которых есть родственники с проблемами свертывания крови, перед зачатием рекомендуется сделать скрининг гетерозиготного носительства, чтобы определить вероятность рождения мальчика с гемофилией

[16]

.


Предсказательное генотипирование

И даже если у человека нет никаких признаков наследственных заболеваний, он все равно может пройти генетическую диагностику. Зачем? Дело в том, что только лишь нарушениями в генах определяются далеко не все наследственные заболевания. Ко многим патологиям может быть предрасположенность. Досимптоматическая диагностика, или ДНК-идентификация, выявляет ее

[17]

. Во многих клиниках это обследование носит название «генетический паспорт», его достаточно сделать один раз, потому что полученные результаты со временем не меняются.

По итогам ДНК-идентификации врач дает пациенту рекомендации: начиная от образа жизни и диеты и заканчивая профессиональными рисками. Следование им помогает избежать развития многих заболеваний.

Виды генетических заболеваний человека и ключевые методы их выявления

В зависимости от того, чем вызвано генетическое заболевание, врач выбирает и методы обследования пациента. Рассмотрим основные группы патологий.


Хромосомные болезни

Причиной этих генетических заболеваний служит нарушение в количественном составе хромосом или в их строении. Например, при наличии дополнительной (третьей) 21-й хромосомы формируется синдром Дауна. Причиной синдрома Шершевского-Тернера является наличие всего одной Х-хромосомы у женщин. А если у мужчины половые хромосомы присутствуют в сочетании XXY, а не XY, то ему ставится синдром Клайнфельтера.

Многие хромосомные нарушения, например, удвоение или утроение, несовместимы с жизнью. Чаще всего зародыши погибают в утробе, а родившиеся дети живут всего несколько дней

[18]

. В то же время бывают случаи, когда у человека есть разные виды клеток: несущие патологические хромосомы и не имеющие этих нарушений. Это явление носит название «мозаицизм», и тогда патология может проявляться в меньшей степени или практически не проявляться

[19]

.

Для диагностики проводят кариотипирование. В качестве примера можно привести синдром Клайнфельтера — редкое генетическое заболевание, которым страдают мужчины. Внешне оно выражается в евнухоподобной внешности, увеличении грудных желез, нарушении половой функции. Подробное изучение состава половых хромосом помогает определить, какое именно нарушение произошло у пациента (лишних Х-хромосом может быть несколько). В зависимости от кариотипа варьируется и степень выраженности признаков заболевания

[20]

.

Может быть нарушено и строение хромосом, а не только их количество. В процессе деления клеток, если «что-то пойдет не так», происходит утрата части хромосомы или, напротив, удвоение какого-либо участка. Хромосома может развернуться на 180 градусов (инверсия), или ее концы образуют кольцо. Например, синдром кошачьего крика — это следствие перестройки пятой хромосомы. Дети, родившиеся с такой патологией, специфически кричат (звук напоминает мяуканье кошки). Обычно они погибают в первые годы жизни, так как патология проявляется многочисленными пороками развития внутренних органов

[21]

.

Пациентам с хромосомными заболеваниями назначают цитогенетическое обследование. Обычно ему подвергаются и родители, чтобы установить, имеет ли место наследуемая патология или же это единичный случай

[22]

.


Генные мутации

Нарушения могут произойти не в хромосоме, а лишь на одном ее участке. Тогда мы говорим о генной мутации. Эти заболевания называются моногенными, к ним, в частности, относятся многие нарушения метаболизма: муковисцидоз, фенилкетонурия, андрогенитальный синдром и т.д. Многие из этих заболеваний могут быть выявлены при обязательном скрининге всех младенцев в роддоме. Ребенок, у которого есть отклонения от нормы, может быть направлен на дополнительное генетическое обследование. А принятые вовремя меры позволяют в некоторых случаях предотвратить развитие серьезных нарушений.

В то же время существуют заболевания, вызванные генными мутациями, которые не проявляются ярко и однозначно. В качестве примера можно привести синдром Вольфрама, который дебютирует как сахарный диабет в раннем возрасте, затем проявляется ухудшением зрения или слуха. Врач может подтвердить синдром только по результатам генетической экспертизы.


Мультифакториальные генетические болезни

Они выявляются при ДНК-идентификации. Анализ подтверждает наличие или отсутствие предрасположенности практически к любой патологии: от сахарного диабета до формирования различных зависимостей

[23]

. Так как роль генетических факторов и факторов внешней среды в развитии заболеваний различна не только для каждой патологии, но и для каждого пациента

[24]

, рекомендации здесь могут быть только строго индивидуальными, сделанными на основании результатов анализов.

В последнее время нередки появления информации об экспресс-тестах, позволяющих определить нарушения в структуре ДНК непосредственно в день анализа. В частности, ученые из Дании создали «светящийся ДНК-тест», который дает результат в течение шести часов

[25]

.

Где можно сдать анализы?

Наследственные заболевания отличаются большим разнообразием: это могут быть патологии, вызванные мутацией генов, нарушением строения хромосом, сочетанием нескольких факторов, в том числе факторов внешней среды. Именно поэтому генетическое обследование лучше выполнять в лаборатории, которая предоставляет максимально широкий спектр услуг. Желательно, чтобы в лаборатории проводилось и кариотипирование, и ПЦР, и пренатальная диагностика, и анализ на носительство.

Второй важный момент — наличие в лаборатории современного сертифицированного оборудования. Оно позволяет делать анализ максимально подробным и полным. Популярные экспресс-системы дают результат в тот же