Метод изучения хромосомных болезней человека цитогенетический

Цитогенетические (кариотипические, кариотипические) методы используются, в первую очередь, при изучении кариотипов отдельных индивидов.

Суть этого метода заключается в изучении строения отдельных хромосом, а также особенностей набора хромосом клеток человека в норме и патологии. Удобным объектом для этого служат лимфоциты, клетки эпителия щеки и другие клетки, которые легко получать, культивировать и подвергать кариологическому анализу. Это важный метод определения пола и хромосомных наследственных заболеваний человека.

Основой цитогенетического метода является изучение морфологии отдельных хромосом клеток человека. Современный этап познания строения хромосом характеризуется созданием молекулярных моделей этих важнейших структур ядра, изучением роли отдельных компо­нентов хромосом в хранении и передаче наследственной инфор­мации.

Изменение кариотипа, как правило, связано с развитием генетических заболеваний. Благодаря культивированию клеток человека можно быстро получить достаточно большой материал для приготовления препаратов. Для кариотипирования обычно используют кратковременную культуру лейкоцитов периферической крови.

Цитогенетические методы используются и для описания интерфазных клеток. Например, по наличию или отсутствию полового хроматина (телец Барра, представляющих собой инактивированные X-хромосомы) можно не только определять пол индивидов, но и выявлять некоторые генетические заболевания, связанные с изменением числа X-хромосом.

Метод позволяет идентифицировать кариотип (особенность строения и число хромосом), путем записи кариограммы. Цитогенетическое исследование проводится у пробанда, его родителей, родственников или плода при подозрении на хромосомный синдром либо другое хромосомное нарушение.

Кариотипирование – цитогенетический метод — позволяющий выявить отклонения в структуре и числе хромосом, которые могут стать причиной бесплодия, другой наследственной болезни и рождения больного ребенка.

В медицинской генетике имеют значение два основных типа кариотипирования:

  1. изучение кариотипа пациентов
  2. пренатальное кариотипирование — исследование хромосом плода

Цитогенетический метод изучения генетики человека. Определение Х- и У-хроматина. Значение метода для диагностики хромосомных заболеваний, связанных с нарушениями числа половых хромосом в кариотипе.

Определение Х- и Y-хроматина часто называют методом экспресс-диагностики пола. Исследуют клетки слизистой оболочки ротовой полости, вагинального эпителия или волосяной луковицы. В ядрах клеток женщин в диплоидном наборе присутствуют две хромосомы Х, одна из которых полностью инактивирована (спирализована, плотно упакована) уже на ранних этапах эмбрионального развития и видна в виде глыбки гетерохроматина, прикреплённого к оболочке ядра. Инактивированная хромосома Х называется половым хроматином или тельцем Барра. Для выявления полового Х-хроматина (тельца Барра) в ядрах клеток мазки окрашивают ацетарсеином и препараты просматривают с помощью обычного светового микроскопа. В норме у женщин обнаруживают одну глыбку Х-хроматина, а у мужчин её нет.

Для выявления мужского Y-полового хроматина (F-тельце) мазки окрашивают акрихином и просматривают с помощью люминисцентного микроскопа. Y-хроматин выявляют в виде сильно светящейся точки, по величине и интенсивности свечения отличающейся от остальных хромоцентров. Он обнаруживается в ядрах клеток мужского организма.

Отсутствие тельца Барра у женщин свидетельствует о хромосомном заболевании — синдроме Шерешевского-Тернера (кариотип 45, Х0). Присутствие у мужчин тельца Барра свидетельствует о синдроме Кляйнфелтера (кариотип 47, ХХY).

Определение Х- и Y-хроматина — скрининговый метод, окончательный диагноз хромосомной болезни ставят только после исследования кариотипа.

Цитогенетический метод

Цитогенетический метод используют для изучения нормального кариотипа человека, а также при диагностике наследственных заболеваний, связанных с геномными и хромосомными мутациями.
Кроме того, этот метод применяют при исследовании мутагенного действия различных химических веществ, пестицидов, инсектицидов, лекарственных препаратов и др.
В период деления клеток на стадии метафазы хромосомы имеют более четкую структуру и доступны для изучения. Диплоидный набор человека состоит из 46 хромосом:
22 пар аутосом и одной пары половых хромосом (XX — у женщин, XY — у мужчин). Обычно исследуют лейкоциты периферической крови человека, которые помещают в специальную питательную среду, где они делятся. Затем готовят препараты и анализируют число и строение хромосом. Разработка специальных методов окраски значительно упростила распознавание всех хромосом человека, а в совокупности с генеалогическим методом и методами клеточной и генной инженерии дала возможность соотносить гены с конкретными участками хромосом. Комплексное применение этих методов лежит в основе составления карт хромосом человека.

Цитологический контроль необходим для диагностики хромо- сомных болезней, связанных с ансуплоидией и хромосомными мутациями. Наиболее часто встречаются болезнь Дауна(трисомия по 21-й хромосоме), синдром Клайнфелтера (47 XXY), синдром Шершевского — Тернера (45 ХО) и др. Потеря участка одной из гомологичных хромосом 21-й пары приводит к заболеванию крови — хроническому миелолейкозу.

При цитологических исследованиях интерфазных ядер соматических клеток можно обнаружить так называемое тельце Барра, или половой хроматин. Оказалось, что половой хроматин в норме есть у женщин и отсутствует у мужчин. Он представляет собой результат гетерохроматизации одной из двух Х-хромосом у женщин. Зная эту особенность, можно идентифицировать половую принадлежность и выявлять аномальное количество Х-хромосом.

Выявление многих наследствен- ных заболеваний возможно еще до рождения ребенка. Метод пренатальной диагностики заключается в получении околоплодной жидкости, где находятся клетки плода, и в последующем биохимическом и цитологическом определении возможных наследственных аномалий. Это позволяет поставить диагноз на ранних сроках беременности и принять решение о се продолжении или прерывании.

Дата добавления: 2015-11-05; просмотров: 7823 | Нарушение авторских прав | Изречения для студентов

Читайте также:

Рекомендуемый контект:

Поиск на сайте:

© 2015-2020 lektsii.org — Контакты — Последнее добавление

Источник

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке «Файлы работы» в формате PDF

Введение

Современная цитогенетика обладает богатым набором методов, позволяющих не только с уверенностью кариотипировать зародыши человека на любой стадии развития, идентифицировать любые хромосомные перестройки, но и непосредственно изучать особенности функциональной активности индивидуальных хромосом и их отдельных сегментов.

Актуальность темы: Значительная часть множественных врожденных пороков развития, нарушений полового и психомоторного развития у детей связана с изменениями числа или структуры хромосом. Поэтому очень важно знать принципы и методы диагностики хромосомных заболеваний, которые позволяют определить состояние плода и своевременно выявить имеющиеся у него заболевания.

Цель: Изучить принципы и методы диагностики хромосомных болезней.

Задачи:

  1. Разобрать понятие хромосомные болезни.

  2. Выяснить какие методы используют для диагностики хромосомных болезней.

  3. Рассмотреть принципы диагностики хромосомных заболеваний.

Глава 1. Понятие «Хромосомные болезни».

Хромосомные болезни – врождённые пороки развития, вызванные изменением числа или структуры хромосом. Среди новорожденных детей частота хромосомной патологии составляет до 1,0%. Наиболее часто встречается трисомия 21 хромосомы, которая приводит к синдрому Дауна. Также отмечают полисомии по Х и Y хромосомам, причём аномальное число половых хромосом часто проявляет себя только в пубертатном возрасте. Изменение структуры хромосом (аберрации) встречаются реже, но вызывают глубокие нарушения развития многих систем органов. Наиболее тяжёлая клиническая картина наблюдается при делеции (потере) части хромосомы, это может быть делеция целого плеча или только локуса хромосомы. Недостаток генетического материала приводит к тяжёлым порокам. Дупликация (удвоение) участка хромосомы может кроме всего прочего влиять на умственное и психическое развитие больного, но обычно не приводит к появлению выраженных аномалий развития [3].

Большинство хромосомных болезней являются спорадическими, возникающими заново вследствие геномной (хромосомной) мутации в гамете здорового родителя или в первых делениях зиготы, а не наследуемыми в поколениях, что связано с высокой смертностью больных в дорепродуктивном периоде.

Фенотипическую основу хромосомных болезней составляют нарушения раннего эмбрионального развития. Именно поэтому патологические изменения складываются еще в пренатальном периоде развития организма и либо обусловливают гибель эмбриона или плода, либо создают основную клиническую картину заболевания уже у новорожденного (исключение составляют аномалии полового развития, формирующиеся в основном в период полового созревания). Раннее и множественное поражение систем организма характерно для всех форм хромосомных болезней. Это черепно-лицевые дизморфии, врожденные пороки развития внутренних органов и частей тела, замедленные внутриутробный и постнатальный рост и развитие, отставание психического развития, пороки центральной нервной системы, сердечно-сосудистой, дыхательной, мочеполовой, пищеварительной и эндокринной систем, а также отклонения в гормональном, биохимическом и иммунологическом статусе. Для каждого хромосомного синдрома характерен комплекс врожденных пороков развития и аномалий развития, присущий в какой-то мере только данному типу хромосомных патологий. Клинический полиморфизм каждой хромосомной болезни в общей форме обусловлен генотипом организма и условиями среды. Вариации в проявлениях патологии могут быть очень широкими — от летального эффекта до незначительных отклонений в развитии.

Глава 2. Методы диагностики хромосомных болезней.

Основным методом диагностики хромосомных заболеваний является цитогенетическое обследование. Наибольшее значение имеет метод кариотипирования и определение полового хроматина. Кариотип изучают в делящихся клетках на стадии метафазы митоза, т.к. в этой стадии хромосомы максимально спирализованы и хорошо видны в световой микроскоп. Препарат метафазных хромосом называется метафазной пластинкой. В зависимости от особенностей материала методы приготовления хромосомных препаратов подразделяются на две категории. 1. Прямые методы применяются при исследовании тканей, обладающих высокой митотической активностью (костный мозг, лимфатические узлы, любые ткани эмбриона на ранних стадиях развития и хорион/плацента до 20-й недели беременности), а также при исследовании мейотических хромосом.

2. Непрямые методы включают получение препаратов хромосом из любой ткани после стимулирования пролиферации клеток в условиях in vitro. Тип культуры (монослой или суспензия) и длительность культивирования (от нескольких часов и дней до нескольких недель) определяются типом клеток.

В зависимости от стадии клеточного цикла проводятся следующие исследования: 1. Исследования отдельных хромосом и их участков в интерфазных ядрах:

• анализ полового хроматина в клетках буккального эпителия основан на регистрации неактивной Х-хромосомы (Х-хроматин) или гетерохроматинового участка Y-хромосомы (Y-хроматин); используется как ориентировочный тест при диагностике нарушений в системе половых хромосом;

• анализ численных и структурных аномалий, затрагивающих конкретные участки хромосом методом FISH; позволяет получить ограниченную информацию о конкретной аномалии кариотипа, а также повысить производительность традиционного цитогенетического анализа в случаях мозаичных вариантов численных аномалий. 2. Исследование профазных хромосом (сперматоциты на стадии пахитены); используется при установлении причин мужского бесплодия. 3. Исследование прометафазных хромосом (высокий уровень разрешения); необходимо для цитогенетической диагностики синдромов, обусловленных микроперестройками хромосом.

4. Исследование метафазных хромосом (ФГА-стимулированных лимфоцитов, клеток костного мозга, фибробластов кожи, эмбриональных и экстраэмбриональных тканей), полученных прямыми и непрямыми методами; используется для установления хромосомного статуса пациента в клинической и пренатальной цитогенетике.

5. Исследование стадий анафазы — телофазы; используется для регистрации специфического воздействия различных мутагенов.[1]

Кариотипирование — цитогенетическое исследование, позволяющее определить численные и структурные отклонения хромосомного набора.Для выявления численных и структурных изменений хромосом, достаточно провести кариотипирование с использованием методов дифференциального окрашивания. Для определения небольших делеций или дупликаций на хромосоме, как правило, необходимо применять метод флюоресцентной гибридизации in situ, достаточно сложный и экономически затратный.

Среди молекулярно-генетических методов анализа хромосомных аномалий выделяют метод мультиплексной лигазной цепной реакции (MLPA). Данная технология позволяет оценить количество копий гена, детектировать точечные мутации, продолжительные делеции или дупликации хромосом. При выполнении одного анализа возможно определить количество копий до 40 участков различных генов.

Для проведения анализа необязательно использовать живые клетки, что даёт преимущество во времени и позволяет детектировать патологии после длительного хранения материала.[3]

Метод кариотипирования позволяет изучить кариотип в целом (т.е. число и структуру хромосом). Для кариотипирования используют венозную кровь (I-2 мл) или из пальца. Кровь помещают в специаль­ную питательную среду (Среда 199 «Игла» и др.) с фитогемагглютинином /ФГА/. ФГА получают из бобовых растений, он вызывает иммунологическую трансформацию лейкоцитов иих деление. Культуру поме­щают в термостат на 48-72 часа.За 2-3 часа до конца культивирования добавляют колхицин. Колхицин получают из растения безвременника весеннего. Он разрушает веретено деления и останавливает деление клетки на стадии метафазы. Следующий этап изготовления препарата—обработка клеток гипотоническим раствором хлорида калияили нитрата натрия. В гипотоническом растворе клетки набухают, межхромосомные связи рвутся, и хромосомы свободно плавают в цитоплазме. Клеточную суспензию фиксируют и наносят на предметное стекло. Привысыхании фик­сатора клетки и хромосомы прочно прикрепляются к стеклу. Препарат окрашивают чаще всего по Романовскому — Гимзе. Такая окраска называ­ется простойили рутинной. Все хромосомы окрашиваются равномерно по всей длине. Рутинная окраска позволяет подсчитать число хромо­сом, распределитьих по группам и обнаружить грубые хромосомные аберрации.

Для тонкойдиагностики хромосомных аберраций с середины 70-х годов используют метод «дифференциальной окраски хромосом».Наиболее широко используют G-окраску. Хромосомы перед окрас­кой по Романовскому — Гимзе предварительно обрабатывают протеазами (трипсином). Хромосомы после окраски становятся полосатыми. Чередование тёмных и светлых полос индивидуально в каждой паре хромо­сом. Предполагают, что темные полосы – гетерохроматиновые участки, а светлые – эухроматиновые.[2]

Спектральное кариотипирование (SKY) и флуоресцентная гибридизация (FISH) являются дополнительными методами цитогенетических исследований. На такие исследования обычно направляет врач-генетик в случаях, когда необходимо дополнительное цитогенетическое обследование.

Спектроскопический анализ хромосом (SKY). При этом методе используются флюоресцентные красители, имеющие сродство к определенным участкам хромосом. При использовании набора специфических зондов с разными красителями каждая пара хромосом имеет свои уникальные спектральные характеристики. Особенность метода — использование интерферометра, аналогично используемого для измерения спектра астрономических объектов. Незначительные вариации в спектральном составе, не различимые человеческим глазом, учитываются при компьютерной обработке, и затем программа назначает каждой паре хромосом легко распознаваемые цвета. Результат в виде цветного изображения чаще используется в цифровой форме. Анализ кариотипа значительно облегчается, поскольку гомологичные хромосомы имеют один и тот же цвет, а аберрации становятся легкоразличимыми. Кроме того, спектральное кариотипирование используется для выявления транслокаций, не распознаваемых традиционными методами.

В настоящее время для того чтобы исключить хромосомный дисбаланс как возможную причину репродуктивных проблем, кариотипирование проводится на самом современном уровне с использованием компьютерных программ хромосомного анализа, получением четкого графического изображения хромосом. Однако серьезные трудности представляют «маркерные» и «атипичные» хромосомы, не идентифицируемые обычными цитогенетическими методами, несбалансированные транслокации, интерстициальные и концевые делеции (потери) или вставки хромосомного материала и другие аномалии. Лишь в начале 90-х годов прошлого столетия с появлением молекулярно-цитогенетических методов проблема диагностики хромосомных болезней стала близка к разрешению.

Метод FISH-анализа (Fluorescenceinsituhybridization) позволяет объективно выявлять индивидуальные хромосомы и их отдельные участки на метафазных пластинках (хромосомы в состоянии максимальной конденсации и визуализации) или интерфазных ядрах (деконденсированные хромосомы, без четкой морфологической структуры) на основе особенностей их молекулярно-генетического строения. Объектом исследования в данном случае являются особенности нуклеотидного состава конкретной хромосомы или ее отдельного участка.

Классический метод FISH-анализа основан на гибридизации известной по нуклеотидному составу ДНК-пробы с участком тестируемой хромосомы и с последующим выявлением результата гибридизации по метке – флуоресцентному сигналу в ожидаемом месте. Метод FISH-анализа превратился в необходимую аналитическую процедуру в ходе цитогенетического исследования и стал востребованным сегодня в пре- и постнатальной диагностике.

Основные преимущества FISH-анализа:

— высокая разрешающая способность (на препаратах можно выявлять те хромосомные нарушения, которые не визуализируются в обычный световой микроскоп);

— точность диагностики (размер проб может варьировать от 90-100 тыс. до нескольких миллионов пар нуклеотидов, так что в качестве мишени могут быть не только отдельные гены или хромосомные участки, но и целая хромосома). FISH-анализ позволяет выявить, к примеру, несколько аномальных клеток среди тысяч клеток с нормальным генотипом.[4]

Определение полового хроматина. Половой хроматин — это спирализованная Х-хромосома. Одна из Х-хромосом у женщин инактивируется на 16-19 сутки эмбрионального развития, а вторая остаетсяактивной. Спирализованная Х-хромосома обнаруживается в ядрахсоматическихклеток в виде темной, хорошо окрашивающейся глыбки.

Методика определения полового хроматина в буккальном соскобе следующая. После предварительного полоскания ротовой полости сто­матологическим шпателем берут соскоб эпителия внутренней поверхно­сти щеки у коренных зубов. Соскоб наносится равномерным слоем на предметное стекло, окрашивается в течение 2 минут ацетоарсеином, за­тем покрывается покровным стеклом. Излишки краски удаляют с помо­щью фильтровальной бумаги. Подсчет телец полового хроматина прово­дят под иммерсией в круглых или овальных ядрах с ненарушенной ядер­ной мембраной. В норме у женщин обнаруживают половой хроматин в более 20% клеток, а у мужчин он в норме отсутствует.Метод используют для диагностики хромосомных болезней, свя­занных с изменением числа Х-хромосом.Существует также методика определения У-хроматина, которая используется для диагностики синдрома полисомии У.

Глава 3. Принципы хромосомного анализа

Обязательным этапом исследования является визуальный анализ хромосом под микроскопом с использованием тысячекратного увеличения (х1000) при окулярах х10 и иммерсионном объективе х100. Оценку качества и пригодности хромосомных препаратов для исследования, а также отбор метафазных пластинок для анализа проводят при малом увеличении (х100). Для исследования выбирают хорошо окрашенные, полные метафазные пластинки с хорошим разбросом хромосом. Исследователь подсчитывает общее количество хромосом и проводит оценку структуры каждой хромосомы путем сопоставления исчерченности гомологов, а также сопоставления наблюдаемой картины с цитогенетическими картами (схемами) хромосом.

Использование компьютерных систем анализа изображений существенно облегчает задачу цитогенетика, повышает качество его работы и предоставляет возможность быстрого и простого документирования результатов исследования. Для обеспечения высокого качества работы рекомендуют участие двух специалистов в проведении цитогенетического исследования каждого образца. Документом, подтверждающим исследование, служит протокол, в котором указывают координаты просмотренных клеток, количество хромосом в каждой из них, обнаруженные перестройки, формулу кариотипа и заключение, а также фамилию пациента, дату и номер исследования, фамилию и подпись врача (врачей), проводившего исследование. Следует сохранять препараты и изображения хромосом для последующего просмотра.[5]

Заключение

В настоящее время у человека известно более 700 заболеваний, вызванных изменением числа или структуры хромосом. Около 25% приходится на аутосомные трисомии, 46% – на патологию половых хромосом. Структурные перестройки составляют 29%.

Пока не существует методов, которые позволяли бы лечить хромосомные болезни, но разработаны методы диагностики таких мутаций, что позволяет их обнаружить на ранней стадии. Такие, как кариотипирование, определение полового хроматина, метод мультиплексной лигазной цепной реакции, методы SKY и FISH. Материалом для диагностики боль­шинства хромосомных болезней являются метафазные пластинки, которые изготавливают из лимфоцитов периферической крови. Так же пригодны фибробласты кожи, клетки красного костного мозга. Для пренатальной диагностики культивируют клетки амниотической жидкости, ворсин хориона, плаценты, эмбриональные ткани.

Основными принципами диагностики хромосомных заболеваний является визуальный анализ хромосом под микроскопом. Для исследования выбирают хорошо окрашенные, полные метафазные пластинки с точным расположением хромосом.

Список используемой литературы

  1. Баранов В.С., Кузнецова Т. В. Цитогенетика эмбрионального развития человека: Научно-практические аспекты. [Текст]: СПб: Издательство Н-Л,2006.

  2. Диагностика хромосомных заболеваний [Электронный ресурс]:Режим доступа: https://studopedia.info/1-97729.html (Дата обращения 19.12.2017)

  3. Котелевская, Е.А., Смирнова, С.А., Василишина, А.А., Трофимова,И.Л., Смолянинов, А.Б. Молекулярно-генетическая диагностика хромосомных заболеваний с помощью мультиплексной лигазной цепной реакции [Текст]: СПб.: Федеральное государственное автономное образовательное учреждение высшего образования «Санкт-Петербургский политехнический университет Петра Великого», 2011.-247с.

  4. Методы диагностики хромосомных заболеваний[Электронный ресурс]: Режим доступа: https://reflemp.ru/metodi-diagnostiki-hromosomnih-zabolevanij.html (Дата обращения 19.12.2017)

  5. Цитогенетическая диагностика хромосомных болезней[Электронный ресурс]: Режим доступа: https://meddaily.info/?cat=article&id=952(Дата обращения 19.12.2017)

Источник