Принципы диагностики и лечения наследственных болезней

Принципы диагностики и лечения наследственных болезней thumbnail

ДИАГНОСТИКА ВРОЖДЕННЫХ ПОРОКОВ РАЗВИТИЯ И НАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ

Диагностика наследственных болезней человека основана на раннем выявлении мутаций, приводящих к формированию патологического фенотипа. В зависимости от времени ее проведения различают пренатальную и постнатальную диагностику.

Пренатальная (дородовая) диагностика — это комплекс инструментальных и лабораторных методов исследования плода, хориона и околоплодной жидкости.

Среди неинвазивных методов пренатальной диагностики широкое практическое распространение получила ультразвуковая диагностика (УЗИ). В последнее время это исследование стало обязательным в процессе беременности и позволяет выявить различные пороки развития. Ультразвуковая диагностика в настоящее время фактически вытеснила ранее применявшийся инвазивный метод — фетоскопию, т.е. прямое визуальное наблюдение за плодом или отдельными частями его тела.

К неинвазивным методам относится также определение биохимических показателей (а-фетопротеина, хорионического гонадотропина, эстриола) в крови беременных женщин.

Указанные выше методы используются для скрининга (массового обследования) беременных и формирования групп риска. Кроме результатов неинвазивного обследования, критериями для отнесения к группе риска являются возраст родителей (женщины старше 35 лет, мужчины старше 45 лет), неблагоприятный акушерский анамнез, инфекции у беременной, лекарственная терапия, действие мутагенных факторов, наличие врожденных пороков или наследственной патологии у одного из родителей или предыдущего ребенка.

Беременным женщинам, включенным в группу риска, рекомендуется пройти более точное обследование инвазивными методами. К ним относят амниоцентез, биопсию хориона, биопсию плаценты, кордоцентез, биопсию тканей плода.

Диагностический амниоцентез — один из основных инвазивных методов пренатальной диагностики, связанный с получением и изучением околоплодной жидкости. Лабораторный анализ околоплодной жидкости включает ее биохимический анализ с определением содержания а-фетопротеина, 17-оксипрогестерона и других компонентов, а также цитогенетический анализ для исследования кариотипа плода при культивировании клеток амниотической жидкости и ДНК-диа- гностику (генодиагностику заболеваний).

Амниоцентез представляет собой манипуляцию, которую проводят с согласия беременной женщины в клинике. Чаще всего он состоит в том, что делают прокол передней брюшной стенки специальной иглой (контролируя процесс с помощью УЗИ) и получают 8—10 мл околоплодной жидкости. В этой жидкости имеются клетки плода, которые могут быть использованы для хромосомного и молекулярно-генетического исследований. При биохимическом исследовании околоплодной жидкости уделяется значительное внимание содержанию а-фетопротеина, который представляет собой специфический белок, активно вырабатываемый печенью плода во внутриутробном периоде. Это один из самых распространенных белковых маркеров, используемых в пренатальной диагностике. Известно, что незначительные количества а-фетопротеина синтезируются в печени взрослого человека и определяются в сыворотке крови у здоровых небеременных женщин. Уровень этого белка в крови женщины увеличивается по мере развития беременности и достигает максимума на 38-й неделе, а-фетопротеин в крови беременной женщины представляет собой транссудат белков амниотической жидкости. Плацента человека становится более проницаемой во второй половине беременности, что и приводит к значительному увеличению перехода а-фетопротеина в кровь женщины из амниотической жидкости. В амниотической жидкости уровень а-фетопротеина колеблется в зависимости от срока беременности соответственно изменениям его концентрации в сыворотке крови плода. Максимальные уровни этого белка можно обнаружить на 12—14-й неделе беременности. Постепенное его снижение происходит к 20-й неделе, а затем уровень а-фетопротеина снижается быстро. Уровень а-фетопротеина повышен при пороках развития нервной трубки, когда имеются дефекты формирования костной ткани и кожи, а также при синдроме Шерешевского — Тернера (45,X). Показатель уровня а-фетопротеина в сыворотке крови беременной женщины снижается при наличии у плода болезни Дауна.

Амниоцентез является достаточно точным и безопасным методом, позволяющим осуществлять пренатальную диагностику многих патологических состояний плода. Однако его недостаток состоит в невозможности применения ранее 14—16-й недели беременности.

Метод биопсии хориона появился в 1968 г., когда была теоретически обоснована и предложена к практическому применению методика трансцервикальной аспирации ворсин хориона. Клетки, полученные из ворсин хориона в ранние сроки беременности (8—12 недель), затем можно использовать для изучения кариотипа и отдельных генов.

Кордоцентез — это метод, связанный с получением крови из пуповины плода под контролем УЗИ и ее дальнейшим цитогенетическим, биохимическим и молекулярно-генетическим исследованием.

В некоторых случаях используют также биопсию тканей плода (кожи, мышц). Так, диагноз миодистрофии Дюшенна может быть подтвержден исследованием в биоптате мышц плода белка дистрофи- на. Перспективы развития пренатальной диагностики связаны с разработкой новых методических основ и технических возможностей ее проведения в первом триместре беременности с использованием комплекса специальных методов исследования (цитогенетических, биохимических, молекулярно-генетических и др.).

Постнатальная (послеродовая) диагностика включает в себя комплекс мероприятий, к числу которых относятся осмотр ребенка, инструментальные, биохимические, цитогенетические и молекулярно-генетические исследования.

Критериями для массового скрининга на наличие определенного наследственного заболевания выступают распространенность заболевания, тяжелое течение и инвалидизация в отсутствие лечения, возможность его эффективного лечения и диагностики. Скрининг состоит из двух этапов: первичной диагностики, заключающейся в выявлении лиц с положительными результатами тестов и формировании группы риска, и уточняющего этапа, необходимого для подтверждения диагноза и исключения лиц с ложноположительными результатами. Примерами наследственных заболеваний, на которые проводится скрининг новорожденных, являются фенилкетонурия и врожденный гипотиреоз.

ЗАДАНИЯ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

  • 1. Из перечисленных заболеваний выберите те, диагноз которых может быть подтвержден с помощью ультразвукового исследования (УЗИ):
    • а) болезнь Дауна;
    • б) фенилкетонурия;
    • в) редукция конечностей;
    • г) дефект нервной трубки;
    • д) синдром Эдвардса.
  • 2. Определите, при каких из указанных заболеваний происходит повышение уровня а-фетопротеина в амниотической жидкости:
    • а) пороки развития нервной трубки;
    • б) гемофилия;
    • в) синдром Шерешевского — Тернера;
    • г) врожденный нефроз.
  • 3. Первый ребенок у молодой матери родился с синдромом Дауна, в настоящее время у этой женщины вторая беременность. Есть ли реальные методы определения хромосомной патологии у плода до рождения? Перечислите эти методы.
  • 4. В порядке самоконтроля имеющихся у вас знаний внесите необходимую информацию в незаполненные колонки табицы.

Таблица

Биохимические методы диагностики генных болезней

Биохимический метод диагностики

Название заболевания

Определение ионов натрия и хлора в потовой жидкости

Проба Феллинга (тест с хлоридом железа) с мочой ребенка

Определение уровня а-фетопротеина в амниотической жидкости

Выявление дефицита фермента 21-гидроксила- зы в плазме крови

5. В сыворотке крови беременной женщины резко снижено содержание а-фетопротеина, тогда как уровень хорионического гонадотропина повышен. Сделайте предварительное заключение о возможной патологии плода.

Источник

В отношении человека, как объекта
генетических ис­следований существует
две точки зрения:

  1. Одни
    полагают, что человек является крайне
    небла­гоприятным объектом генетических
    исследований.

  2. Другие,
    наоборот, находят в человеке много
    преимуществ.

Почему же человек – неблагоприятный
объект для генетических исследований?

а) Невозможность экспериментальных
браков, т.е. искус­ственного создания
брака (скрещивания). Нельзя по заранее
составленной схеме получить и
проанализировать потомство от родителей
с известным генотипом. Еще Н.К.Кольцов
в 1923 году писал «… мы не можем заставить
Н.Нежданову выйти замуж за Ф.Шаляпина,
чтобы посмотреть, каковы у них будут
дети». При генетическом анализе
человека как бы выпадает основа
гибридологического метода –
экспериментальное скрещивание. Этот
«недостаток» можно преодолеть
двумя путями: 1) среди множества
человеческих семей исследователь может
найти такие, которые соответствуют его
схемам исследования; 2) успешно
разрабатываемый метод гибридизации
соматических клеток позволяет уже в
некоторых случаях проводить генетический
анализ, используя культуру клеток
человека.

б) Ограниченное количество потомков
(1–2–3 ребенка) в семье. Даже в государствах
с большим приростом населения количество
детей в семье не более 3–4, а 10–15 детей
– крайне редко. В любом случае размер
семьи настолько мал, что не позволяет
вести анализ расщепления признаков в
потомстве в пределах одной семьи. Однако,
зная признак, по которому анализируется
потомство, можно подобрать не одну, а
необходимое количество семей.

в) Длительность смены поколений. Для
смены одного поколения человека нужно
в среднем 30 лет, а это значит, что генетик
не может наблюдать более 1–2 поколений.
Этот недостаток в известной мере
устраняется большими популяциями
человека, регистрацией признаков в
течение длительного времени (на протяжении
нескольких поколений).

г) Достаточно большой по количеству
набор хромосом (групп сцепления). Он
состоит из 23 пар, что затрудняет их
генетическое и цитологическое картирование
и снижает тем самым возможность
генетического анализа.

д) Модификация наследственной изменчивости
под влиянием образа жизни, социальных
факторов.

е) Организационные недостатки (но они
исправимы): плохая сохранность
документации, неудовлетворительная
регистрация браков, рождаемости,
смертности, диагностики наследственных
болезней и статистики.

Преимущества человека, как генетического
объекта:

а) Хорошая изученность фенотипа человека
– анатомическая, физиологическая,
иммунологическая, биохимическая,
клиническая. Специалисты различного
профиля продолжают независимо от
интересов генетиков изучать человека,
что несомненно помогает генетику легко
распознавать многие формы наследственных
отклонений.

б) Возможность использовать все методы,
применяемые в медицине (биохимические,
морфологические, иммунологические,
электрофизиологические, клинические
и др.), т.е. любые методы, которые дают
возможность регистрировать признак и
выражать его количественно.

Для решения сугубо генетических
задач применительно к человеку в
настоящее время используют следующие
методы:

  1. Генеалогический(генеалогия – греч. genealogia; от genea рождение,
    происхождение, поколение + logos слово,
    изложение – установление родственных
    связей между индивидумами в пределах
    одного поколения или в ряду поколений,
    или родословная) – метод родословных,
    т.е. прослеживание болезни (или признака)
    в семье или роду с указанием типа
    родственных связей между членами
    родословной. В медицинской генетике
    его часто называют клинико-генеалогическим,
    так как речь идет об изучении патологических
    признаков в семье с помощью клинических
    приемов обследования. Он относится к
    наиболее универсальным методам в
    генетике человека. Этот метод используется
    для установления наследственного
    характера признака, определения типа
    наследования и пенетрантности гена,
    при анализе сцепления генов и картирования
    хромосом, при изучении интенсивности
    мутационного процесса, при расшифровке
    механизмов взаимодействия генов, при
    медико–генетическом консуль­тировании.
    Суть этого метода сводится к выяснению
    родственных связей и к прослеживанию
    признака или болезни среди близких и
    дальних, прямых и непрямых родственников.
    Он включает два этапа: составление
    родословных и генеалогический анализ.

Составление родословной начинается с
пробанда (лицо, первое попавшее в поле
зрения исследователя). Чаще всего это
больной или носитель изучаемого признака.
Дети одной родительской пары называются
сибсами (братья–сестры). Семьей в узком
смысле называют родительскую пару и их
детей. Обычно родословная собирается
по одному или нескольким признакам. Она
может быть полной (составление по
восходящему, нисходящему и боковым
направлениям) и ограниченной. Для
наглядности готовят графическое
изображение родословной. Грубой ошибкой
является искусственное укорочение
звеньев родословной в связи с трудностями
обследованных родственников II и III
степени. Генеалогический анализ позволяет
установить генетические закономерности:
наследственный характер признака и тип
наследования.

Недостатки и ошибки при использовании
генеалогического метода могут быть
обусловлены неправильной диагностикой
болезни (признака) и возможностью
неправильного определения отцовства
за счет внебрачных связей (от 1–3 до
10%).

  1. Близнецовый
    метод
    – исследование генетических
    закономерностей на близнецах. Он был
    предложен Gallon в 1875 г. При использовании
    этого метода производится сопоставление
    монозиготных близнецов сдизиготными,
    партнеров монозиготных пар между собой,
    данных анализа близнецовой выборки с
    общей популяцией.

Монозиготными близнецами (однояйцевые,
идентичные) называются индивиды, выросшие
из одной зиготы, раз­делившейся на
ранних стадиях дробления на 2 части; они
обладают поэтому идентичными генотипами.
Дизиготные близнецы (двуяйцевые,
неидентичные) возникают за счет
оплодотворения двух яйцеклеток,
развивающихся в течение одной беременности.
Они имеют в среднем 50% идентичных генов,
но отличаются от обычных сибсов
значительно большей общностью факторов
среды.

Общая частота родов двойнями равна
приблизительно 1%, из которых 1/4–1/3
приходится на рождение монозиготных
близнецов. Близнецовый метод применяется
для:

  • оценки
    соотносительной роли наследственности
    и среды в развитии признака;

  • установления
    наследственного характера признака и
    определения пенетрантности гена;

  • оценки
    действия некоторых внешних факторов:
    лекарственных препаратов, методов
    воспитания, обучения.

Этот метод включает 3 этапа: 1) сопоставление
близнецовой выборки, 2) установление
зиготности, 3) сопоставление пар и групп
близнецов по рассматриваемым признакам.

Диагностика основывается на анализе
наиболее изученных моногенных полиморфных
признаков (эритро– и лейкоцитарные
антигены, группы белков сыворотки крови
и т.д.). Дизиготные близнецы в отличие
от монозиготных отличаются по этим
признакам. Если какой–либо качественный
признак встречается у обоих близнецов
данной пары – это конкордантная пара,
а если только у одного из них – это
дискордантная пара близнецов.

  1. Популяционно-статистический
    метод
    основан на использовании
    наследственных признаков в больших
    группах населения из одной или нескольких
    популяций, в одном или нескольких
    поколениях. Изучаются выборки из
    конкретных популяций с применением
    статистической обработки полученного
    материала. Этот метод используется для
    изучения:

а) частоты генов в популяции, включая
частоту нас­ледственных болезней,

б) мутационного процесса,

в) роли наследственности и среды в
возникновении болезней, особенно
болезней с наследственным предрасположением,

г) роли наследственности и среды в
формировании фенотипического полиморфизма
по нормальным признакам,

д) значения генетических факторов в
антропогенезе, в частности в расообразовании.

Возможные ошибки этого метода могут
быть связаны с недоучетом миграции
населения и с тем, что выбранные группы
отличаются по большему числу признаков,
чем сравниваются.

  1. Цитогенетический
    метод
    основан на микро­скопическом
    изучении хромосом. Его начали широко
    использовать в генетике человека только
    с 20–х годов XX века для:

  • диагностики
    хромосомных болезней,

  • составления
    карт хромосом,

  • изучения
    мутационного процесса,

  • решения
    некоторых эволюционных проблем в
    генетике человека,

  • изучения
    нормального хромосомного полиморфизма
    в человеческой популяции.

Именно с этим методом связано открытие
всех форм хромосомных болезней. С его
помощью изучается частота хромосомных
и геномных мутаций в зародышевых клетках
и частота хромосомных аберраций в
соматических клетках. Культуры
соматических клеток человека являются
хорошими объектами для проверки
мутагенности факторов среды (физических,
химических, биологических). Цитогенетическими
методами изучаются механизмы мутагенеза.

Основные сведения о морфологии хромосом
человека получены при их изучении в
метафазе митоза и профазе–метафазе
мейоза. Для прямого хромосомного анализа
можно использовать клетки костного
мозга и гонад (семенников), полученные
путем биопсии, что ограничивает
цитогенетические исследования без
культивирования. Поэтому основные
цитогенетические работы выполнены на
культурах клеток человека, особенно на
лимфоцитах периферической крови.

Культивирование лейкоцитов периферической
крови в течение 2–3 суток в присутствии
ФГА позволяет получить большое число
метафаз. Кроме лейкоцитов, можно
культивировать клетки эпидермиса,
амниотической жидкости. «Сортировка»
хромосом (во время метафазы) прямо под
микроскопом или чаще всего на
микрофотографиях позволяет построить
кариотип – т.е. упорядоченно расположить
хромосомы по их отличительным признакам.
В основе идентификации хромосом лежит
два признака: общая длина хромосомы и
расположение центромера; но он не
позволяет индивидуально идентифицировать
все хромосомы. Поэтому используются
более точные методы: радиоавтографический,
окраску хромосом флуорохромами,
красителем Гимзы, гибридизации нуклеиновых
кислот на цитологических препаратах.

  1. Методы
    генетики соматических клеток
    .
    Поскольку соматические клетки содержат
    весь объем генетической информации,
    на них можно изучать генетические
    закономерности целостного организма.
    Соматические клетки человека
    характеризуются 5основными
    свойствами, позволяющими их использовать
    в генетических исследованиях:

  • быстрое
    размножение их на питательных средах,
    что позволяет получать необходимое их
    количество для анализа,

  • они
    подвергаются клонированию
    –можно получать генетически
    идентичное потомство,

  • разные
    клетки могут сливаться, образуя гибридные
    клоны,

  • легко
    подвергаются селекции на специальных
    питательных средах,

  • хорошо
    и долго сохраняются при глубоком
    замораживании.

Культуру соматических клеток человека
получают для генетических исследований
из материала биопсий или аутопсий (кожа,
опухоли, периферическая кровь, костный
мозг, ткань эмбрионов, клетки из
околоплодной жидкости). В настоящее
время чаще используются фибробласты и
лимфоидные клетки. В генетике человека
используют 4метода из
генетики соматических клеток: простое
культивирование, клонирование,
гибридизация и селекция.

В настоящее время обосновано
4
подхода в борьбе с
наследственными болезнями:

  1. Массовое
    «просеивание» новорожденных на
    нас­ледственные дефекты обмена
    веществ.

  2. Пренатальная
    диагностика.

  3. Медико-генетическое
    консультирование.

  4. Контроль
    за мутагенной опасностью факторов
    окружающей среды.

  1. Массовое
    «просеивание«новорожденных на наследственные болезни
    обмена веществ наряду с другими методами
    является основой профилактики
    наследственных болезней в популяциях.
    «Просеивание» (аналог
    –»скрининг») означает
    предположительное выявление
    недиагностированной ранее болезни с
    помощью тестов, обследований или других
    процедур, дающих быстрый ответ.

Проще говоря, просеивание –это обследование контингентов с целью
подразделения их на группы с высокой и
низкой вероятностью заболевания.
«Просеивают» заболевания, для
которых установлена связь между мутантным
геном и поврежденной биохимической
функцией. Изменения в биохимических
параметрах по срокам своего проявления
предшествуют возникновению клинических
симптомов.

Современные программы массового
просеивания предусматривают выявление
фенилкетонурии, гипотиреоза, врожденной
гипоплазии надпочечников, галактоземию,
муковисцидоз, гомоцистинурию, лейциноз,
гистидинемию, аминоацидопатии,
недостаточность альфа–1–антитрипсина.
В практике массового просеивания на
наследственные болезни обмена веществ
используется кровь (пуповинная,
капиллярная, венозная) и сыворотка
крови.

Просеивание в зависимости от искомого
дефекта проводят среди различного
контингента с учетом возраста, национальной
и расовой принадлежности. Просеивание
на наследственные аминоацидопатии и
гипотиреоз необходимо проводить в
первые дни жизни, чтобы терапия оказалась
эффективной; просеивание на носительство
гемоглобинопатии и болезни Тея–Сакса
–у вступающих в брак. Просеивание
на гемоглобинопатию целесообразно в
популяциях или расовых группах,
подвергшихся действию малярийного
фактора отбора, а просеивание на
носительство болезни Тея–Сакса (в
Израиле) –у евреев–ашкенази,
у которых мутантный ген встречается в
10раз чаще, чем в других популяциях.

Например, в программах массового
просеивания на фенилуксусную кислоту
и другие аминоацидопатии используют
три метода: микробиологический по Гатри
(на его долю приходится 90%),хроматографический и флюорометрический.

  1. Пренатальная
    диагностика
    осуществляется с помощью
    разных методов исследования в
    Iи IIтриместрах
    беременности. В ней нуждается
    10–15%семей, обращающихся в
    медико–генетическую консультацию.
    Показания к проведению пренатальной
    диагностики:

  • пожилой
    возраст родителей,

  • гетерозиготное
    носительство хромосомной аномалии,

  • предыдущее
    рождение ребенка с болезнью Дауна,
    врож­денными пороками развития или
    умственной отсталостью,

  • Х–сцепленная
    патология,

  • наследственные
    дефекты метаболизма,

  • тератогенные
    воздействия.

Пренатальная диагностика представляет
собой комплексное исследование,
основанное на использовании лабораторных
и инструментальных методов:

  1. ультразвуковое
    исследование (врожденные пороки
    развития),

  2. фетоскопия
    используется для взятия образцов крови,
    кожи или других органов плода (показания
    –токсоплазмоз, вирусная краснуха,
    гемофилия, талассемия, осложнения
    связанные с самопроизвольным прерыванием
    беременности),

  3. фетоамниография
    использовалась до появления УЗИ для
    диагностики врожденных пороков развития
    костной системы, спинномозговых и
    пупочных грыж и особенно атрезий
    желудочно–кишечного тракта. Использование
    контрастных веществ вызывает осложнения
    как у беременной, так и у плода,

  4. диагностический
    амниоцентез (в сроки 14–20недель беременности) –это акушерско–хирургическая процедура,
    позволяющая получить амниотическую
    жидкость для после­дующих лабораторных
    исследований (в 1–2%случаев после амниоцентеза наблюдается
    гибель плода). Амниотические клетки
    используют для культивирования и
    цитогенетических исследований, для
    диагностики лизосомных болезней,
    альфа–фетопротеина, для диагностики
    более 60форм наследственных
    ферментопатий,

  5. диагностическая
    биопсия хориона (хориоцентез). Оптимальный
    срок для биопсии –17–я
    неделя беременности, а результаты,
    связанные с культивированием амниотических
    клеток, могут быть получены спустя
    3–5недель. Используют 3
    основных методики получения биоптата
    хориона: с помощью щипцов, методом
    эндоцервикальной аспирации и с помощью
    браши (по типу лабораторного ершика
    для пробирок). Этот метод используют
    для диагностики хромосомных и
    биохимических (молекулярных) нарушений.

  1. Медико-генетическое
    консультирование включает:

  • выявление
    наследственной формы патологии на
    основании осмотра больного, составления
    родословной, цитологических, биохимических,
    кариологических и других методов
    диагностики наследственных болезней,

  • определение
    степени риска появления потомства с
    наследственными дефектами развития у
    лиц из семей, отягощенных наследственной
    патологией, вступающих в брак и желающих
    иметь детей. В обоснованных случаях
    рекомендуется воздержаться от заключения
    брака,

  • выявления
    нарушений в геноме, обменных процессов
    у пло­да с помощью методов пренатальной
    диагностики с возможным дальнейшим
    прерыванием беременности, если риск
    рождения больного ребенка достаточно
    высок. Однако, принятие оконча­тельного
    решения о прерывании или сохранении
    беременности остается за супругами,

  • искусственное
    осеменение от генетически здорового
    доно­ра применимо в тех случаях, когда
    рождение здорового потом­ства
    невозможно из-за доминантного характера
    наследования патологии.

  1. Контроль
    за мутагенной опасностью факторов
    окружающей среды осуществляют генетики,
    экологи, врачи гигиенического профиля,
    учитывая естественный фон радиации и
    его колебания, дрейф мутаций и т.п.

Принципы лечения наследственных
заболеваний:

  1. Симптоматическое
    лечение –хирургическое
    лечение расщелины верхней губы и
    твердого неба, сросшихся пальцев,
    коррегирующие линзы при близорукости
    и др.

  2. Патогенетическая
    терапия –воздействие
    на те механизмы, которые формируют
    наследственное заболевание:

  • заместительная
    терапия –восполнение
    недостающего компонента (введение
    инсулина при сахарном диабете,
    свертывающих факторов при гемофилии
    и т.д.) или удаление части железы при
    гиперфункции;

  • когда
    повышен синтез тех или иных веществ,
    то уменьшают их образование путем
    применения медикаментов, угнетающих
    их образование;

  • диетотерапия
    –при нарушении расщепления тех
    или иных веществ (галактозы, фенилаланина)
    их исключают из диеты;

  • медикаментозное
    лечение направлено на удаление
    про­дуктов, избыточно накапливающихся
    в организме. Например, при поражении
    печени в ней накапливаются ионы меди,
    поэтому применяют ионообменные смолы,
    которые препятствуют вса­сыванию
    меди в кишечнике.

  1. Генная
    инженерия –это направление
    исследований в молекулярной биологии
    и генетике, конечной целью которого
    является получение с помощью лабораторных
    методов организмов с новыми комбинациями
    наследственных свойств. В основе лежит
    целенаправленное манипулирование с
    фрагментами нуклеиновых кислот, т.е.
    конструируются из различных фрагментов
    генетического материала нужные фрагменты
    и вводятся в реципиентный организм.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Источник